

NCP-7 Lithium-Ion Cell Life Test Performance

Albert H. Zimmerman and Michael V. Quinzio
The Aerospace Corporation

2011 NASA Aerospace Battery WorkshopHuntsville, AL16 November 2011

Background of NCP-7 Cell Life Tests

- Test concepts developed in early 2000
 - Feasibility test for space use of Yardney Li-ion cells
 - Various real time and accelerated feasibility life tests have been run on 17 different types of Liion cells since 2000
 - Space Li-ion technology new at the time
 - Cycle life compared directly with other Li-ion, NiCd and NiMH cells
- Tests were run between 5 and 10°C
 - Low temperature electrolyte in cells, similar to MER cells used by JPL
 - Belief at the time that low temperature operation would give improved cycle life
- Four cells delivered by Yardney in early 2001
 - Cells activated in December of 2000
 - Acceptance testing completed in January of 2001
- Life testing began in June 2001
 - 15 and 16-cycles/day profiles between 20% and 25% depth of discharge*
 - Peak charge voltage kept below 4.0 to hopefully maximize life

^{*}All depths of discharge are based on 7 Ah nameplate capacity

Beginning of Life Cell Capacities

- Measured in January 2001, discharge to 2.7 volts
- Showed a decreasing trend, to just over 7 Ah

Two Life Tests are Being Run – Two Cells Each

- Fixed DOD Test
 - 90 minute cycle
 - 16 cycles per day
 - 21.4% DOD
 - No operational capacity measurements during cycling
- Variable DOD Test
 - 96 minute cycle
 - 15 cycles per day
 - 14.3% to 24.8% DOD
 - No operational capacity measurements during cycling
- All four cells in both tests continue to cycle with good performance

Fixed Depth of Discharge Test (cells 1 & 2)

- Two cells tested with 1.5 Ah discharge each cycle
 - 30-minute discharge, 3 amp discharge rate
 - 21.4% depth-of-discharge (DOD) every cycle
 - Cycle life compared directly with other Li-ion, NiCd and NiMH cells
- Recharge is to 4.0 volts
 - 60-minute recharge time each cycle
 - Charge at 2.25 amps to maximum voltage, then 0.83 amps until a desired recharge ratio was attained
 - Recharge ratio was adjusted to enable voltage to just reach 4.0 at the 0.83 amp rate
 - Cells operated in series with commercial NiCd and NiMH cells*, which required recharge ratio control
- Test interrupted after ~ 34,000 cycles
 - Tab welds on terminal posts loosened
 - Cells connections changed to compression contacts on terminal posts
- Test continues to operate at ~59,000 cycles

^{*}NiMH cells continue to operate, NiCd cells failed after 20,000 to 25,000 cycles

Fixed Depth of Discharge Test – Initial Capacity

- Measured in June 2001, showed capacity of 6.08 Ah to 2.9 volts
- Lower than the capacity in January 2001
- Life test cycling initiated in June 2001

Fixed Depth of Discharge Test – BOL Testing

- Electrochemical Voltage Spectroscopy performed on one cell
- Measured charge density vs. voltage under near-equilibrium conditions

Fixed Depth of Discharge Test – End of Discharge and Peak Charge Voltages

Continuing stable performance

Fixed Depth of Discharge Test – Charge and Discharge Voltage for Selected Cycles

- •21.4% DOD
- Two step recharge, with several minutes of open circuit at the end after the required recharge ratio has been reached

Fixed Depth of Discharge Test – Charge and Discharge Current Profiles for Selected Cycles

Fixed Depth of Discharge Test – Recharge Ratio

Fixed Depth of Discharge Test – Temperature

Variable Depth of Discharge Test (cells 3 & 4)

- Two cells tested using three depths of discharge each day
 - 34-minute discharge, 15 cycles per day
 - Daily 7 cycles at 14.3% DOD (1.765 amp discharge rate)
 - Daily 7 cycles at 21.5% DOD (2.647 amp discharge rate)
 - Daily 1 cycle at 24.8% DOD (3 amps for 30 min, 3.5 amps for 4 min)
- Recharge is nominally to 3.95 volts
 - 62-minute recharge time each cycle
 - First 16,500 cycles used recharge ratio charge control
 - Charge at 2.25 amps (2.5 amps for higher DOD) to maximum voltage, then taper current until the desired recharge ratio attained
 - Subsequent cycles used constant current at either 2.25 or 2.5 amps, with current taper to hold each cell at 3.95 volts (CC/CV)
- Test interrupted after ~ 21,500 cycles
 - Tab welds on terminal posts loosened
 - Cells connections changed to compression contacts on terminal posts
- Test continues to operate at ~46,000 cycles

Variable Depth of Discharge Test – End of Discharge Voltage

Variable Depth of Discharge Test – Peak Charge Voltage

Variable Depth of Discharge Test – Voltages for Selected Cycles at Maximum 24.8% DOD

- Recharge ratio charge control with stepwise current taper for first 16,500 cycles
- CC/CV charge control at 3.95 volts peak thereafter

Variable Depth of Discharge Test – Currents for Selected Cycles at Maximum 24.8% DOD

- Recharge ratio charge control with stepwise current taper for first 16,500 cycles
- CC/CV charge control with real current taper at 3.95 volts peak thereafter

Variable Depth of Discharge Test – Recharge Ratio

Variable Depth of Discharge Test – Cyclic Energy Efficiency

Variable Depth of Discharge Test – Temperature

End of Charge Temperature

End of Discharge Temperature

Conclusions

- The Yardney NCP-7 cells have performed well for over 10.5 years
 - Good performance for up to ~58,000 cycles
 - Performance trend shows gradual continuing degradation
- NCP-7 cells are no longer available
 - NC cathode active material obsolete
 - MCMB anode material also obsolete
- Generic feasibility demonstrated for long term space use
- Life test planned to continue until cells fail

Acknowledgement

This work was supported under The Aerospace Corporation's Mission Oriented Investigation and Experimentation program, funded by the U.S. Air Force Space and Missile Systems Center under Contract No. FA8802-09-C-0001.

